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Critical lines of the Yang-Lee edge singularity of Ising ferromagnets on square, triangular,
and honeycomb lattices

Xian-Zhi Wang and Jai Sam Kim
Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

~Received 29 October 1997!

We extend our previous approach to determine the critical lines of the Yang-Lee edge singularity of Ising
ferromagnets on square, triangular, and honeycomb lattices by considering the zeros of the Ising partition
function on elementary cycles of these lattices. It is found that the critical lines have the propertiesh0→t15/8 as
T→Tc1 andbh0→p/2 asT→`. Using the asymptotic formulas valid in the high-temperature limit and the
zero-field limit we obtain the functional form of the critical line.@S1063-651X~98!02005-4#

PACS number~s!: 05.50.1q, 75.40.Cx, 75.10.Hk, 64.60.Cn
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I. INTRODUCTION

In 1952, Yang and Lee@1# opened a new way to the stud
of phase transitions. They called attention to the zeroes o
grand partition function in the complex fugacity plane. Th
showed that in the thermodynamic limit the zero distributi
approaches the positive real axis and gives the trans
point. In application to the ferromagnetic Ising model, th
considered the zeroes of the partition function in the comp
magnetic plane and proved the famous circle theorem.
Yang-Lee circle theorem states that the zeroes of the p
tion function in the complex magnetic plane are distribu
on a unit circle. The theorem asserts that the critical line
an Ising ferromagnet is located ath50 for T,Tc . Later this
theorem was extended to many ferromagnetic systems,
as higher-order Ising model@2#, Ising models with multiple
spin interactions, the quantum Heisenberg model@3#, the
classicalXY and Heisenberg model@4#, and some continu-
ous spin systems@5#. Ruelle @6# extended the theorem t
noncircular regions. Lee@7# presented a generalized circ
theorem to the asymmetric transitions and further to a c
tinuum system.

Above the critical temperature,T.Tc , the zeroes do no
come close to the realh axis in the thermodynamic limit and
the free energy is not analytic inh. There exists a gap on th
imaginaryh axis, where zeroes are void. Since the gap s
depends on the temperature, one can envision a critical
h5 ih0(T) ~hereh0 is real! along which the free energy be
comes singular,F;(h2 ih0)u ~hereu is a critical exponent!
@8#. This singularity was termed the Yang-Lee edge sin
larity by Fisher. Fisher@9# proved that the edge singularitie
representing the zeroes lying closest to the real axis of
field, are closely analogous to the conventional critical poi
and that the relevant scaling laws are applicable. Furth
more, the universality should hold for them too and the
ture of these singularities is independent of the detailed
tice structure and depends only on the dimensionality and
symmetry property of the order parameter.

Since the Yang-Lee edge singularity has the most imp
tant influence on the equation of state of a ferromagnet, th
have been many studies on it. These include the Yang-
edge singularity in the Ising model@10#, in the hierarchical
model @11#, in the spherical model@12#, in the classical
571063-651X/98/57~5!/5013~6!/$15.00
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n-vector models and quantum Heisenberg model@13#, as
well as in the relation with conformal invariance in two d
mensions@14# and in the relation with the critical behavior o
branched polymers@15#, etc.

Unlike the critical exponents, the critical lines are n
universal and depend on temperature, detailed lattice st
ture, and interaction strengths. Unfortunately, it is difficult
obtain the critical line and little is known about the actu
form of h0(T) since the Ising model in a magnetic field h
not been solved exactly so far except for the one-dimensio
Ising ferromagnet and the 2D Ising model on the Kago
lattice @16#. Kurtze and Fisher@13# analyzed high-field and
high-temperature series for ferromagnetic Ising models
obtain the asymptotic formula forh0(T), which is valid for
all Ising models.

Recently, we introduced an approach@17# for two-
dimensional Ising models. By considering the zeroes of
Ising partition functions on elementary cycles of square,
angular, and honeycomb lattices, we obtained the exact z
field critical conditions. Making use of Griffiths’ smoothnes
postulate @18#, we extended the zero-field results to th
nonzero-field case and obtained accurate closed-form
proximations of the critical lines of isotropic and anisotrop
Ising antiferromagnets on square and honeycomb latti
Our results are in good agreement with the numerical res
obtained by other means.

Since the Yang-Lee edge singularity behaves like an
dinary critical point there are good reasons for extending
approach to this case also. In this paper, we extend our
proach to obtain closed-form approximations to the criti
lines of the Yang-Lee edge singularities of Ising ferroma
nets on square, triangular, and honeycomb lattices.

This paper is organized as follows. In Sec. II we discu
the Yang-Lee edge singularity of a ferromagnet with the C
rie point. We use the Griffiths’ equation of state to obtain t
equation of edge singularity, valid near the zero-field critic
temperature. In Sec. III we consider the exact solution of
one-dimensional Ising ferromagnet. From this we derive
equation of edge singularity and obtain its asymptotic fo
in the high-temperature limit. In Sec. IV we consider t
exact solution of the two-dimensional Ising ferromagnet
h5 i (p/2)kT obtained by Yang and Lee. We derive the cri
cal field in the high-temperature limit. In Sec. V we briefl
5013 © 1998 The American Physical Society
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review our basic approach developed previously and refin
for the 2D Ising ferromagnets. In Sec. VI we apply this a
proach to isotropic Ising ferromagnets on square, triangu
and honeycomb lattices and obtain closed-form approxi
tions to the critical lines on these lattices. In Sec. VII we g
a summary of the paper.

II. THE YANG-LEE EDGE SINGULARITY
OF A FERROMAGNET

It is interesting to ask whether a ferromagnet with t
Curie point has the Yang-Lee edge singularity. Here
show that a ferromagnet satisfying Griffiths’ analyticity do
have the Yang-Lee edge singularity.

If a ferromagnet has Griffiths’ analyticity@19#, then near
the critical point, the equation of state can be written as

h~M ,t !

kTc
5 (

n50

`

anutug22bnM2n11, ~1!

whereb and g are critical exponents, andt is the reduced
temperaturet5(T2Tc)/Tc . If we approach the critical poin
enough, we can consider only the lowest two terms:

h~M ,t !

kTc
5a0utugM1a1utug22bM3, ~2!

and thus we obtain

S ]h

]M D
T

5~a0utug13a1utug22bM2!kTc . ~3!

Above the critical point,a0.0 and a1.0. At the phase
transition point we must have (]h/]M )T50, whose non-
trivial solution is

M5 i S a0

3a1
D 1/2

utub. ~4!

Substituting Eq.~4! into Eq. ~2! we obtain the critical mag-
netic field,

h5 ih05 i
2A3a0

3/2

9a1
1/2 utub1gkTc . ~5!

We identify Eq.~5! with the Yang-Lee edge singularity
Since Griffiths’ analyticity is a general property of a ferr
magnet with the Curie point, we see thatany ferromagnet
with the Curie point has the Yang-Lee edge singularity. The
Yang-Lee edge singularity is a general aspect of critical p
nomena and it is more general than the circle theorem.

Essam and Hunter@20# used the series expansion meth
and obtained a few coefficients of the 2nth derivatives of the
free energy with respect to magnetic field for ferromagne
Ising models. Gaunt and Domb@21,22# used these coeffi
cients to calculate some coefficientsan for ferromagnetic
Ising models with the aid of the inversion method. For
square lattice Ising ferromagnet, they obtaineda051.0387,
a150.8479, a250.7495, a350.6801, a451.1376, anda5
56.7041. The estimated errors areE(a0)50.001, E(a1)
50.004,E(a2)50.03, andE(a3).0.1, respectively. The er
it
-
r,

a-

e

e-

c

rors increase rapidly for higher-order coefficientsan . Using
only a0 anda1 in Eq. ~5!, we obtainh05t15/80.4425kTc in
the limit T→Tc1.

Using the numerical results of Essam and Hunter@20#, we
calculatea0 anda1 for some lattices: For a triangular lattice
a051.0818 anda150.9143, andh05t15/80.4529kTc . For
three-dimensional Ising models,b55/16 andg55/4. For a
simple cubic lattice, a050.9436, a150.4851, and h0
5t25/160.5065kTc ; for a face centered cubic lattice,a0
51.0248,a150.5885, andh05t25/160.5205kTc ; for a body
centered cubic lattice,a051.0097, a150.5758, andh0
5t25/160.5146kTc ; for a diamond lattice,a050.8532, a1
50.3895, andh05t25/160.4861kTc .

III. 1D ISING FERROMAGNET

The partition function of an Ising model in the presence
a magnetic field is given by

Z5(
$Si %

expFb(̂
i j &

Ki j SiSj1bh(
i

Si G , ~6!

where Si561, Ki j are the interaction strengths, andb
51/kT. The sum over̂ i j & runs over nearest neighbors o
the lattices. We consider the ferromagnetic caseKi j .0.

In order to best illustrate the Yang-Lee edge singular
let us consider the 1D Ising ferromagnet. The exact solut
@23,24# gives the free energy,

F/N52K2b21ln@coshbh1~sinh2bh1e24bK!1/2#,
~7!

and the magnetization,

M5
sinh bh

~sinh2bh1e24bK!1/2. ~8!

Thus we have

S ]M

]h D
T

5
b coshbh

~sinh2bh1e24bK!1/22
b sinh bh coshbh

~sinh2bh1e24bK!3/2.

~9!

The phase transition condition, (]h/]M )T50, requires that
sinh2bh1e24bK50. This equation does not have a real so
tion except ath50 andT50. So h must be complex and
purely imaginary, namely,h5 ih0. The critical line is given
by

sin bh05e22bK. ~10!

Expanding Eq.~7! aroundih0 we obtainF;(h2 ih0)1/2 near
the critical line. It is easy to verify that in the limitT→`,
Eq. ~10! yields

bh0→p/22~4bK !1/21 2
3 ~bK !3/21O~T25/2!. ~11!

The critical line is plotted in Fig. 1.

IV. EXACT CRITICAL FIELD IN THE
HIGH-TEMPERATURE LIMIT

Though the 2D Ising model in the absence of magne
field was solved exactly by Onsager@25#, its behavior in a
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57 5015CRITICAL LINES OF THE YANG-LEE EDGE . . .
magnetic field is not known exactly except for the case o
Kagome lattice@16#. We do not have precise knowledge
its thermodynamic properties in general. Nevertheless
their classic paper@1#, Yang and Lee did find an exact solu
tion for the square lattice Ising ferromagnet in a spec
imaginary magnetic fieldh5 i (p/2)kT. Here we give only
the result. The free energy and magnetization are res
tively given by

F~z521,x!52
ip

2

kT

4p2E
0

pE
0

p

dv1dv2ln$~12x2!2

3@11~624 cos2v124 cos2v2!x21x4#%

~12!

and

M ~z521,x!5F ~11x2!2

~12x2!~116x21x4!1/2G1/4

, ~13!

wherex5e22bK and z5e22bh. Sinceb and K are real, in
the limit T→`, we havex→1. In this limit the above equa
tions approach, respectively,

F; ln~12x! ~14!

and

M;~12x!21/4. ~15!

Thus x51 is a singularity and corresponds to the critic
point. Sinceh5 i (p/2)kT is purely imaginary, we identify
this critical point T→` as the Yang-Lee edge singularit
Then the critical field must be equal toh05(p/2)kT. This is
consistent with the result obtained by Kurtze and Fisher@13#.

V. BASIC APPROACH

The Ising partition function in the absence of a magne
field on each elementary cycle of triangular, square, and h
eycomb lattices can be written respectively as

zt52@eb~K11K21K3!1eb~2K12K21K3!1eb~2K22K31K1!

1eb~2K32K11K2!#, ~16!

FIG. 1. The critical line of the 1D ferromagnet. The unit ofT is
k/K.
a

in

c

c-

l

c
n-

zs52@e2b~K11K2!1e2b~K12K2!1e22b~K12K2!

1e22b~K11K2!14#, ~17!

zh52@e2b~K11K21K3!14e2bK114e2bK214e2bK314e22bK1

14e22bK214e22bK31e2b~K11K22K3!1e2b~K21K32K1!

1e2b~K31K12K2!1e22b~K11K22K3!1e22b~K21K32K1!

1e22b~K31K12K2!1e22b~K11K21K3!#. ~18!

Making a transformation exp(2bKj)→i exp(2bKj), we obtain

zt852i 3/2eb~K11K21K3!@12e22b~K11K2!2e22b~K21K3!

2e22b~K31K1!#, ~19!

zs852z1
21z2

21@~z11z2!22~12z1z2!2#, ~20!

zh8522i z1
21z2

21z3
21@~12z1z22z2z32z3z1!2

2~z11z21z32z1z2z3!2#, ~21!

where z j[exp(22bKj). Thus the real solutions ofz850
give the exact zero-field critical temperatures of Ising fer
magnets on triangular, square, and honeycomb lattices@26#:
square:z1z21z11z251; triangular:z1z21z2z31z3z151;
honeycomb: z1z2z32z1z22z2z32z3z12z12z22z311
50. Thus we make the following observation:

Lemma 1: Let the Ising partition function on each eleme
tary cycle of the square, triangular, and honeycomb latti
be z5z(T,h50). Make a transformation exp(2bKj)
→i exp(2bKj) and thusz→z8. Then the critical temperature
of the Ising ferromagnets on square, triangular, and hon
comb lattices in the absence of a magnetic field are given
the real solutions ofz850.

Along the critical line of the Yang-Lee edge singulari
(]h/]M )T(h5 ih0)50. Near the critical line, the magnetiza
tion exhibits a branch point of the form

M ~h,T!;@h2 ih0~T!#s, ~22!

wheres is the critical exponent (s,1). This suggests tha
near the critical line, the magnetization takes the form

M ~T.Tc ,h!5g~T,h!@P~T,h!#s, ~23!

whereg(T,h) andP(T,h) are analytic functions ofT andh.
Let us consider

S ]M

]h D
T

5
]g

]h
Ps1sg

]P

]h
Ps21. ~24!

Sinceg(T,h) andP(T,h) and their derivatives with respec
to h do not diverge for arbitraryh, along the critical line
(]h/]M )T(h5 ih0)50 requires P(T,h5 ih0)50, which
gives the critical line.

On the other hand, for a square lattice Ising model,
spontaneous magnetization is given by@27#
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M ~T,Tc ,h50!5F12S 2z1

12z1
2

2z2

12z2
2D 2G1/8

;@z8~T,h50!#1/8. ~25!

Thus P(T5Tc ,h5 ih050)5z8(T5Tc ,h50). Therefore
we might plausibly extend Lemma 1 to the caseh5 ih0, T
.Tc :

Conjecture: Let the Ising partition function on each e
ementary cycle of square, triangular, and honeycomb latt
be z5z(T,h). Make the transformation

e2bK j→ ie2bK j and bh→ f ~bh0!. ~26!

Thus z→z8 with f (0)50 andP(T5Tc ,h5 ih050)5z8(T
5Tc ,h50). Heref (bh0) is assumed to be a real function
bh0. Thenthe critical line of the Yang-Lee edge singulari
is given by P(T,h5 ih0)5z850.

In the following, we will apply this approach to the iso
tropic Ising ferromagnets on square, triangular, and hon
comb lattices.

VI. ISOTROPIC ISING MODELS

A. Derivation of the fitting function f „bh0…

In this case, the partition function on each element
cycle of square, triangular, and honeycomb lattices is gi
by

z5l1
N 1l2

N , ~27!

with

l65ebK@coshbh6~sinh2bh1e24bK!1/2#, ~28!

whereN is the number of edges of an elementary cycle. Th
z50 yields

coshbh

~sinh2bh1e24bK!1/25~2 i !cot p
2n11

2N

~n50,1, . . . ,N21!. ~29!

Making the transformations~26!, we obtain

e24bK5 tan2p
2n11

2N
cosh2f ~bh0!1sinh2f ~bh0!

~n50,1, . . . ,N21!, ~30!

where only n5N21 is allowed. Thus the critical line is
given by

e24bK5 tan2Fp~q22!

4q Gcosh2f ~bh0!1sinh2f ~bh0!,

~31!

whereq is the coordination number and we have used
Baxter’s formula@26#,

e22bcK5tanFp~q22!

4q G . ~32!
es

y-

y
n

s

e

Solving Eq.~31! for f (bh0), we obtain

f ~bh0!5
1

2
lnS C

2
1AC2

4
21D , ~33!

where

C~T!5
4e24bK12~12e24bcK!

11e24bcK . ~34!

We can determine the functional form off by considering
two limits of Eq. ~31!.

In the limit T→` Eq. ~31! approaches

15 tan2Fp~q22!

4q Gcosh2f ~bh0!1sinh2f ~bh0!. ~35!

This meansbh0→const, which is consistent with the resu
obtained by Kurtze and Fisher@9#,

bh0→p/22~bK/z0!1/21O~T23/2!. ~36!

For the 1D Ising ferromagnet, Eq.~11! givesz051/4.
In the limit T→Tc1, expanding the left-hand side of Eq

~31! around bc and the right-hand side aroundf 50, we
obtain

f ~bh0!→t1/2F 4K

kTc~11e4bcK!G
1/2

. ~37!

On the other hand, according to Eq.~5!, h0→utub1g in the
limit T→Tc1 ~hereb is the critical exponent!.

We tried several functions and Taylor series forf (bh0)
that would yield these two limits. We found that only th
following functional form can satisfy the two limits~36! and
~37!:

f ~bh0!5A sin@b1~bh0!l1b2~bh0!l111b3~bh0!l12

1•••#, ~38!

where we need to impose the condition

b1S p

2 D l

1b2S p

2 D l11

1b3S p

2 D l12

1•••5
p

2
. ~39!

As h0→0, T→Tc1 and Eq.~38! approaches

f ~bh0!→Ab1~bh0!l. ~40!

Comparing Eqs.~37! and ~40! we obtainh0→t1/2l and thus
l51/2(b1g). Since for a 2D Ising ferromagnet,b51/8
and g57/4, we obtainl54/15. In this way we obtain, as
T→Tc1,

h05t15/8kTcF ~Ab1!22
4bcK

11e4bcKG15/8

. ~41!

As T→`, let bh0→p/22y to obtain

f ~bh0!→A2y2B, ~42!

where
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A5 f (p/2) and

B5~A/2!@b1l~p/2!l211b2~l11!~p/2!l

1b3~l12!~p/2!l111•••#2. ~43!

Thus in this limit, sinhf(bh0)→sinhA2y2BcoshA, and
coshf(bh0)→coshA2y2BsinhA. Substituting these result
into Eq. ~31! we obtain

y5F 4bK

B~sinh 2A!~11e24bcK!G
1/2

. ~44!

Therefore we obtain

z05B~sinh 2A!~11e24bcK!/4. ~45!

In the following, we determine the coefficientsbn and
thus obtain closed-form approximations to the critical line

B. Square lattice

Taking the high-temperature limitbh0→p/2 of Eqs.~35!

and ~38! we obtainA5 1
2 ln(11A21A212A2)50.76429.

Making use of z050.088963 computed in@13# and h0
5t15/80.4425kTc in the limit T→Tc1 and the normalization
condition ~39!, we obtainb150.826 23,b250.42432, and
b3520.04060 with

f ~bh0!5A sin@b1~bh0!l1b2~bh0!l111b3~bh0!l12#.
~46!

The critical line is plotted in Fig. 2.

C. Triangular lattice

In this case we usez050.056 076 computed in@13# and
h05t15/80.4529kTc in the limit T→Tc1. Following the
same procedure, we obtainA5 1

2 ln(21A3)50.658 48,b1
50.983 07,b250.276 31, andb3520.009 93. The critical
line is plotted in Fig. 2.

FIG. 2. The critical lines of 2D Ising ferromagnets. The unit
T is k/K.
.

D. Honeycomb lattice

Kurtze and Fisher@13# calculatedz0 for some lattices:
z050.088 963~square,q54); z050.056 076~triangular,q
56); z050.052 025 ~simple cubic,q56); z050.037 309
~body centered cubic,q58); z050.024 224~face centered
cubic, q512). From these values we notice thatz0 is
roughly proportional to 1/q. Using these observations, w
roughly estimatez050.12 for the honeycomb lattice (q
53).

In Sec. II, we calculated the coefficients of Eq.~5! for
Ising ferromagnets on many lattices. It is found that for
given dimension, the coefficients vary slightly and are a
proximately independent of lattice structures. Therefore
estimate that for an Ising ferromagnet on a honeycomb
tice, h050.45t15/8kTc asT→Tc1.

Using the above estimates and following the same pro
dure, we obtainA5 1

2 ln(11A31A312A3)50.831 44 and
b150.62509,b250.63654 andb3520.09418. The critical
line is plotted in Fig. 2.

VII. CONCLUSION

We have extended our recent approach exploiting the
roes of Ising partition functions of the elementary cycles
square, triangular, and honeycomb lattices. The exact z
field critical conditions are obtained as the zeroes of
transformed Ising partition functions. Making use of th
critical condition of the Yang-Lee edge singularit
(]h/]M )T(T.Tc ,h5 ih0)50, we extended the zero-fiel
critical conditions to the caseT.Tc and h5 ih0(T), and
obtained the critical lines,h5 ih0(T) of the Yang-Lee edge
singularity of Ising ferromagnets on square, triangular, a
honeycomb lattices.

We use the two limiting behaviors ofh0: ~1! the property
of the critical lines:h0→t15/8 as T→Tc1, ~2! the limiting
form of the critical line asT→`, bh0→p/22(bK/z0)1/2

1O(T23/2). The asymptotic behaviors of the critical line i
the high-temperature limit and in the zero-field limit restr
the functional form off (bh0) to a sine function. By using
the numerical results obtained by Kurtze and Fisher, we
tained some constantsA, b1, b2, andb3 for the three lattices.
Using Yang and Lee’s exact solution of a square lattice Is
ferromagnet in a specific imaginary magnetic fieldh
5 i (p/2)kT we obtained the exact critical field in the high
temperature limit.

In addition, we showed that the Yang-Lee edge singu
ity is a general aspect of critical phenomenon and any fe
magnet with the Curie point has the Yang-Lee edge sin
larity. We have not found numerical data for anisotrop
lattices. If such data become available in the future, we w
extend our method to the anisotropic case and obtain
critical lines on these lattices.
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